Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки. Органические вещества, их роль в клетке. Самоудвоение ДНК - Клеточная теория - ОБЩАЯ БИОЛОГИЯ - ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЕГЭ

Биология универсальные материалы с методическими рекомендациями, решениями и ответами - Самостоятельная подготовка к ЕГЭ

Содержание химических элементов в клетке. Вода и другие неорганические вещества, их роль в жизнедеятельности клетки. Органические вещества, их роль в клетке. Самоудвоение ДНК - Клеточная теория - ОБЩАЯ БИОЛОГИЯ - ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЕГЭ

К неорганическим соединениям клетки относятся вода и различные соли.

В среднем в клетке содержится около 80% воды: в клетках эмбриона воды до 95%, в клетках старых организмов — 60%, то есть количество воды зависит от интенсивности обмена веществ. Количество воды зависит также от вида ткани: в нейронах ее 85%, в костях — не более 20%. При потере организмом 20% воды наступает смерть. Вода определяет тургор (упругость) тканей, создает среду для химических реакций, участвует в реакциях гидролиза, в световой фазе фотосинтеза, в терморегуляции, является хорошим растворителем. По отношению к воде различают вещества гидрофильные (полярные вещества) — хорошо растворимые в воде и гидрофобные (неполярные вещества) — плохо растворимые в воде.

Роль солей в организме заключается в обеспечении трансмембранной разности потенциалов (вследствие разницы во внутри- и внеклеточной концентрации ионов калия и натрия), создании буферных свойств (за счет наличия в цитоплазме анионов фосфорной и угольной кислоты), в создании осмотического давления клетки и т.д. В состав неорганических веществ клетки входят микроэлементы (их доля составляет менее 0,1%). К ним относятся цинк, марганец и кобальт, которые входят в состав активных центров ферментов; железо в составе гемоглобина; магний в составе хлорофилла; йод в составе гормонов щитовидной железы и др.

К органическим веществам клетки относятся белки, углеводы, жиры, нуклеиновые кислоты.

Белки — это гетерополимеры, состоящие из 20 различных мономеров — природных альфа-аминокислот. Белки — нерегулярные полимеры.

Общее строение аминокислоты может быть представлено следующим образом: R—C(NH2)—СООН. Аминокислоты в белке связаны пептидной связью —N(H)—С(=О). Аминокислоты разделяют на заменимые, синтезирующиеся в самом организме, и незаменимые, которые животный организм получает с пищей. Среди белков различают протеины — состоят только из аминокислот и протеиды — содержат небелковую часть (например, гемоглобин, который состоит из белка глобина и порфирина — гема).

В строении молекулы белка различают первичную структуру — последовательность аминокислотных остатков; вторичную — как правило, это спиральная структура (альфа-спираль), которая удерживается множеством водородных связей, возникающих между находящимися близко друг от друга С=О и NH-группами. Другой тип вторичной структуры — бета-слой, или складчатый слой, — это две параллельные полипептидные цепи, связанные водородными связями, перпендикулярными цепям. Третичная структура белковой молекулы — это пространственная конфигурация, напоминающая компактную глобулу. Она поддерживается ионными, водородными и дисульфидными (S=S) связями, а также гидрофобными взаимодействиями. Четвертичная структура образуется при взаимодействии нескольких глобул (например, молекула гемоглобина состоит из четырех таких субъединиц). Утрата белковой молекулой своей структуры называется денатурацией; она может быть вызвана температурой, обезвоживанием, облучением и т. д. Если при денатурации первичная структура не нарушается, то при восстановлении нормальных условий полностью воссоздается структура белка.

Функции белков в клетке очень разнообразны. Они играют роль катализаторов, то есть ускоряют химические реакции в организме (ферменты ускоряют реакции в десятки и сотни тысяч раз). Белки выполняют также строительную функцию (входят в состав мембран и органоидов клетки, а также в состав внеклеточных структур, например, волокна коллагена в соединительной ткани). Движение организмов обеспечивается специальными белками (актином и миозином). Белки выполняют также транспортную функцию (например, гемоглобин транспортирует О2). Белки входят в состав иммунной системы организма (антитела и антигены), обеспечивают свертывание крови (например, белок фибриноген плазмы крови), то есть выполняют защитную функцию. Они служат одним из источников энергии (при распаде 1 г белка выделяется 17,6 кДж энергии). Различают также регуляторную функцию белков, так как многие гормоны являются белками (например, гормоны гипофиза, поджелудочной железы и т. д.). Кроме того, в организме имеются еще и резервные белки, являющиеся источником питания для развития плода.

Углеводы — это органические соединения, в состав которых входят водород, углерод и кислород. Образуются из воды и углекислого газа в процессе фотосинтеза в хлоропластах зеленых растений (у бактерий в процессе бактериального фотосинтеза или хемосинтеза).

Различают моносахариды (глюкоза, фруктоза, галактоза, рибоза, дезоксирибоза), дисахариды (сахароза, мальтоза), полисахариды (крахмал, клетчатка, гликоген, хитин).

Углеводы выполняют следующие функции: являются источником энергии (при распаде 1 г глюкозы освобождается 17,6 кДж энергии), выполняют строительную функцию (целлюлозная оболочка в растительных клетках, хитин в скелете насекомых и в клеточной стенке грибов), входят в состав ДНК, РНК и АТФ в виде дезоксирибозы и рибозы. Обычно в клетке животных организмов содержится около 1% углеводов (в клетках печени до 5%), а в растительных клетках до 90%.

Жиры и липиды относятся к группе неполярных органических соединений, то есть являются гидрофобными веществами. Жиры — это триглицериды высших жирных кислот, липиды — большой класс органических веществ с гидрофобными свойствами (например, холестерин). К липидам относят фосфолипиды (в их молекуле один или два остатка жирных кислот замещены группами, содержащими фосфор, а иногда также азот) и стероиды (в основе их структуры лежат 4 углеродных кольца).

Эти соединения выполняют энергетическую функцию (при распаде 1 г жира выделяется 38,9 кДж), структурную (являются основой биологических мембран), защитную (защита от ударов, теплорегуляция, гидроизоляция).

АТФ — это аденозинтрифосфат, нуклеотид, относящийся к группе нуклеиновых кислот. Концентрация АТФ в клетке мала (в среднем 0,04%; в скелетных мышцах 0,5%). Молекула АТФ состоит из аденина, рибозы и трех остатков фосфорной кислоты. При гидролизе остатка фосфорной кислоты выделяется энергия:

Связь между остатками фосфорной кислоты является макроэргической, при ее расщеплении выделяется примерно в 4 раза больше энергии, чем при расщеплении других связей. Энергию АТФ клетка использует в процессах биосинтеза, при движении, при производстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и т. д. АТФ является универсальным аккумулятором энергии в живых организмах.

ДНК (дезоксирибонуклеиновая кислота) — это молекула, состоящая из двух спирально закрученных полинуклеотидных цепей. ДНК образует правую спираль шириной примерно 20 ангстрем, длиной несколько сотен микрон и молекулярной массой 10 дальтон. Структура ДНК была расшифрована Д. Уотсоном и Ф. Криком в 1953 г. Мономером ДНК является дезоксирибонуклеотид, состоящий из азотистого основания (аденина (А), цитозина (Ц), тимина (Т) или гуанина (Г)), пентозы (дезоксирибозы) и фосфата. Нуклеотиды соединяются в цепь за счет остатков фосфорной кислоты, расположенных между пентозами; в полинуклеотиде может быть до 30 тыс. нуклеотидов. Последовательность нуклеотидов одной цепи комплементарна, то есть соответствует последовательности в другой цепи. Цепи удерживаются за счет водородных связей между комплементарными азотистыми основаниями: по две водородные связи между А и Т и по три между Г и Ц. В интерфазе перед делением клетки происходит репликация (редупликация) ДНК: ДНК раскручивается с одного конца, и на каждой цепи синтезируется новая комплементарная цепь; это ферментативный процесс, идущий с использованием энергии АТФ. ДНК содержится в основном в ядре; к внеядерным формам ДНК относятся митохондриальная и пластидная.

РНК (рибонуклеиновая кислота) — это молекула, состоящая из одной цепи нуклеотидов. Рибонуклеотид состоит из одного из четырех азотистых оснований, но вместо тимина (Т) в РНК урацил (У), а вместо дезоксирибозы — рибоза. В клетке имеются разные виды РНК: тРНК (транспортная — транспортирует аминокислоты к рибосомам), иРНК (информационная — переносит информацию о последовательности аминокислот с ДНК на белок), рРНК (рибосомальная — входит в состав рибосом), митохондриальная РНК и др.

Перед делением клетки происходит удвоение ДНК для того, чтобы обеспечить нормальный набор генов в обеих образующихся клетках.

Удвоение ДНК получило название редупликации. При редупликации водородные связи между комплементарными азотистыми основаниями аденином-тимином и гуанином-цитозином разрываются специальным ферментом. Нити, составляющие двойную спираль ДНК, расходятся, и к каждому нуклеотиду обеих нитей последовательно подстраиваются комплементарные нуклеотиды. Подстраивающиеся нуклеотиды соединяются в две нити ДНК, каждая из которых представляет копию разошедшихся нитей ДНК. Таким образом, в результате редупликации возникают две одинаковые двойные спирали ДНК, состоящие из нити «материнской» молекулы и вновь синтезированной нити. В процессе удвоения ДНК участвует много ферментов. Как на любой синтез в клетке, на редупликацию затрачивается энергия АТФ.






Для любых предложений по сайту: [email protected]